The paper presents the results of the study of the processes of self-propagating high-temperature synthesis of Zr-1%B alloy and its refining by electron beam melting. Experiments on the influence of boron’s amorphous and crystalline modifications on the safety parameters of the synthesis process of Zr-1%B alloy necessitated the conversion of amorphous boron into crystalline form by electron beam melting, with an increase in its purity from 94% to 99.9%. High efficiency of vacuum induction and electron beam equipment was demonstrated, which provided a high purity of the Zr-1%B alloy of at least 99.9%. The alloy ingots had a uniform distribution of the alloying element (boron) all over the volume. The obtained alloy is suitable for the production of materials with thermal neutron capture cross-sections of up to 40 barns for neutron protection.