InAlAs/InGaAs/InAlAs nanoheterostructures with different structures of metamorphic buffer layer and quantum well, which were grown by means of molecular-beam epitaxy on GaAs and InP substrates, are investigated. The laboratory technology of the growth of the given nanoheterostructures with predicted properties is perfected. The potential of an approach based on the comprehensive analysis of experimental data obtained via different techniques, namely, X-ray diffractometry, electron diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and atomic-force microscopy is studied. The metamorphic buffer layer design is improved on the basis of the results of the performed investigations. A method whereby balanced-mismatched superlattices are introduced directly inside the metamorphic buffer layer is proposed. It is established that the technological parameters of the growth of nanoheterostructures affect their structural perfection and electrophysical properties.