Nanofine rhomboid spatial dissipative structures (NRSDS) of hexagonal selenium were found and studied by means of transmission electron microscopy in amorphous Se films coated with nanofine layers of amorphous carbon, at a temperature of their thermo gradient treatment of 423 K. As a result, pictures were received of fan-shaped linear bending extinction contours on the electron-microscopic images of NRSDS. It was shown that in the above NRSDS take place continuous linear increase in the bend radius of the lattice along [001], due to continuous linear relaxation of the inhomogeneous elastic torsion of the lattice around [001]. The continuous linear relaxation of the elastic rotational curvature of the lattice around [001] in NRSDS of hexagonal selenium with inhomogeneous elastic rotational curvature of the lattice covers the entire nanofine rhomboid spatial dissipative structures, and not its part, as is the case with the formation of interblock boundaries in the nanofine rhomboid spatial dissipative structures.