In the last two decades, scanning probe microscopies (SPMs) have become the primary tool for addressing structure and electronic, mechanical, optical, and transport phenomena on the nanometer and atomic scales. Here, we summarize basic principles of SPM as applied for oxide materials characterization and present recent advances in high-resolution imaging and local property measurements. The use of advanced SPM techniques for solutions of material related problems is illustrated on the examples of grain boundary transport in polycrystalline oxides and ferroelectric domain imaging and manipulation. Future prospects for SPM applications in materials science are discussed. In the last two decades, scanning probe microscopies (SPMs) have become the primary tool for addressing structure and electronic, mechanical, optical, and transport phenomena on the nanometer and atomic scales. Here, we summarize basic principles of SPM as applied for oxide materials characterization and present recent advances in high-resolution imaging and local property measurements. The use of advanced SPM techniques for solutions of material related problems is illustrated on the examples of grain boundary transport in polycrystalline oxides and ferroelectric domain imaging and manipulation. Future prospects for SPM applications in materials science are discussed.