The electronic structure of divalent hexagonal close packed Mg is investigated by means of the high-resolution Compton scattering. Two-dimensional (2D) electron momentum densities are reconstructed using their line integrals, derived from the plane integrals of three-dimensional (3D) electron momentum densities measured directly in the Compton experiment.The analysis is performed both in the extended and reduced zone schemes. The results are compared with corresponding densities calculated within Korringa-Kohn-Rostoker in the local density approximation (KKR-LDA) band structure theory and electron-positron densities measured in the angular correlation of annihilation radiation (ACAR) experiment.