ÂÒÓËÏÇÓ, ÔÑÎÐÇÚÐÞÇ ÃÂÕÂÓÇË Ô ÒÑÅÎÑÜÂáÜËÏË ÔÎÑâÏË Ð ÑÔÐÑÄÇ ÚÇÕÄÇÓÐÞØ ÔÑÇAEËÐÇÐËÌ ÏÇAEË ÔÑ ÔÕÓÖÍÕÖÓÑÌ ØÂÎßÍÑÒËÓËÕ Cu-In-Ga-(S, Se) (CIGS) [11,12] Cu 2 Se z 0 z 0,60 z 0,75
ªÔÕÑÓËâ ÒÓËÏÇÐÇÐËâ
®ÇÕÑAEÞ ÔËÐÕÇÊ ÕÑÐÍËØ ÒÎÈÐÑÍªÊ ÄÞÓÂÉÇÐËâ (17)
®ÂÕÇÓËÂÎÞ "ÑÍÐÂ" Ë ×ÓÑÐÕÂÎßÐÞÌ àÎÇÍÕÓÑǢÂËÃÑÎÇÇ ÓÂÔÒÓÑÔÕÓÂÐÈÐÐÞÏ ÏÂÕÇÓËÂÎÑÏ AEÎâ ÔÎÑâ ÑÍР(ÔÏ. ÓËÔ. 1) âÄÎâÇÕÔâ ÐÇÎÇÅËÓÑÄÂÐÐÞÌ ZnO (E g 3Y30 ë 3Y52 à£) [185,186] [194,195]. ¥Îâ ÔÑÊAEÂÐËâ ÄÇÓØÐÇÅÑ ÍÑÐÕÂÍÕÂ, ÍÂÍ ÒÓÂÄËÎÑ, ËÔÒÑÎßÊÖÇÕÔâ ÄÞÔÑÍÑÚÂÔ-ÕÑÕÐÑÇ ÏÂÅÐÇÕÓÑÐÐÑÇ ÓÂÔÒÞÎÇÐËÇ [196]. ²ÇÉÇ ËÔÒÑÎßÊÖÇÕÔâ ÓÇÂÍÕËÄÐÑÇ ÏÂÅÐÇÕÓÑÐÐÑÇ ÓÂÔÒÞÎÇÐËÇ ËÎË ÏÂÅÐÇÕÓÑÐÐÑÇ ÓÂÔÒÞÎÇÐËÇ Ð ÒÑÔÕÑâÐÐÑÏ ÕÑÍÇ [193,197].¥ÂÎÇÇ Ð ÔÑÎÐÇÚÐÞÌ àÎÇÏÇÐÕ ÐÂÐÑÔâÕ ÍÑÐÕÂÍÕÐÖá ÔÇÕ-ÍÖ: 50 ÐÏ Ni/1 ë 3 ÏÍÏ Al. ¬ÑÐ×ËÅÖÓÂÙËâ ÔÇÕÍË ÊÂÄËÔËÕ ÑÕ ÔÑÒÓÑÕËÄÎÇÐËâ ÔÎÑâ AZO, ÍÑÕÑÓÑÇ, Ä ÔÄÑá ÑÚÇÓÇAEß, ÑÒÓÇAEÇÎâÇÕÔâ ÕÑÎÜËÐÑÌ ÒÎÈÐÍË Ë ÏÇÕÑAEÑÏ ÇÈ ÒÑÎÖÚÇÐËâ. ±ÑÔÎÇAEÐËÏ ÔÎÑÇÏ ÔÑÎÐÇÚÐÑÌ ÃÂÕÂÓÇË âÄÎâÇÕÔâ ÒÓÑÔÄÇÕ-ÎâáÜÇÇ ÒÑÍÓÞÕËÇ ì ÕÑÐÍËÌ ÔÎÑÌ MgF 2 .¥Îâ ÍÂÒÔÖÎËÓÑÄÂÐËâ ÒÓËÏÇÐâáÕ ÄÂÍÖÖÏÐÑÇ ÎÂÏËÐË-ÓÑÄÂÐËÇ ÕËÒ ÔÕÇÍÎÑ-ÔÕÇÍÎÑ. 17,7 ë 17,9 % [205, 206] This paper reviews literature data on thin élm solar cells with an absorbing quaternary layer of Cu-In-Ga-(S, Se) (CIGS). The paper considers methods of preparation of CIGS layers and discusses the chemical composition, design features and operating principles of CIGS solar cells. The bulk of recent literature reveals how research in the éeld is starting to change: important results are being obtained by numerically simulating processes in thin-élm solar cells; element concentration gradients in the CIGS structure, the spatially nonuniform band gap distribution, and layer grain boundaries are receiving increasing research attention for their respective roles; and kinetic studies are increasing.