Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Atomistic modeling of energetic disorder in organic semiconductors (OSCs) and its effects on the optoelectronic properties of OSCs requires a large number of excitedstate electronic-structure calculations, a computationally daunting task for many OSC applications. In this work, we advocate the use of deep learning to address this challenge and demonstrate that state-of-the-art deep neural networks (DNNs) are capable of predicting the electronic properties of OSCs at an accuracy comparable with the quantum chemistry methods used for generating training data. We extensively investigate the performances of four recent DNNs (deep tensor neural network, SchNet, message passing neural network, and multilevel graph convolutional neural network) in predicting various electronic properties of an important class of OSCs, i.e., oligothiophenes (OTs), including their HOMO and LUMO energies, excited-state energies and associated transition dipole moments. We find that SchNet shows the best performance for OTs of different sizes (from bithiophene to sexithiophene), achieving average prediction errors in the range of 20-80meV compared to the results from (time-dependent) density functional theory. We show that SchNet also consistently outperforms shallow feed-forward neural networks, especially in difficult cases with large molecules or limited training data. We further show that SchNet could predict the transition dipole moment accurately, a task previously known to be difficult for feed-forward neural networks, and we ascribe the relatively large errors in transition dipole prediction seen for some OT configurations to the charge-transfer character of their excited states. Finally, we demonstrate the effectiveness of SchNet by modeling the UV-Vis absorption spectra of OTs in dichloromethane and a good agreement is observed between the calculated and experimental spectra. Our results show the great promise of DNNs in depicting the rugged energy landscapes encountered in OSCs, serving as the first step in the atomistic modeling of optoelectronic processes in OSCs relevant to device performances. 2
Atomistic modeling of energetic disorder in organic semiconductors (OSCs) and its effects on the optoelectronic properties of OSCs requires a large number of excitedstate electronic-structure calculations, a computationally daunting task for many OSC applications. In this work, we advocate the use of deep learning to address this challenge and demonstrate that state-of-the-art deep neural networks (DNNs) are capable of predicting the electronic properties of OSCs at an accuracy comparable with the quantum chemistry methods used for generating training data. We extensively investigate the performances of four recent DNNs (deep tensor neural network, SchNet, message passing neural network, and multilevel graph convolutional neural network) in predicting various electronic properties of an important class of OSCs, i.e., oligothiophenes (OTs), including their HOMO and LUMO energies, excited-state energies and associated transition dipole moments. We find that SchNet shows the best performance for OTs of different sizes (from bithiophene to sexithiophene), achieving average prediction errors in the range of 20-80meV compared to the results from (time-dependent) density functional theory. We show that SchNet also consistently outperforms shallow feed-forward neural networks, especially in difficult cases with large molecules or limited training data. We further show that SchNet could predict the transition dipole moment accurately, a task previously known to be difficult for feed-forward neural networks, and we ascribe the relatively large errors in transition dipole prediction seen for some OT configurations to the charge-transfer character of their excited states. Finally, we demonstrate the effectiveness of SchNet by modeling the UV-Vis absorption spectra of OTs in dichloromethane and a good agreement is observed between the calculated and experimental spectra. Our results show the great promise of DNNs in depicting the rugged energy landscapes encountered in OSCs, serving as the first step in the atomistic modeling of optoelectronic processes in OSCs relevant to device performances. 2
Despite the remarkable progress of machine learning (ML) techniques in chemistry, modeling the optoelectronic properties of long conjugated oligomers and polymers with ML remains challenging due to the difficulty in obtaining sufficient training data. Here we use transfer learning to address the data scarcity issue by pre-training graph neural networks using data from short oligomers. With only a few hundred training data, we are able to achieve an average error of about 0.1 eV for excited state energy of oligothiophenes against TDDFT calculations. We show that the success of our transfer learning approach relies on the relative locality of low-lying electronic excitations in long conjugated oligomers. Finally, we demonstrate the transferability of our approach by modeling the lowest-lying excited-state energies of poly(3-hexylthiopnene) (P3HT) in its single-crystal and solution phases using the transfer learning models trained with data of gas-phase oligothiophenes. The transfer learning predicted excited-state energy distributions agree quantitatively with TDDFT calculations and capture some important qualitative features observed in experimental absorption spectra.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.