2020
DOI: 10.26434/chemrxiv.13238414
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Transfer Learning with Graph Neural Networks for Optoelectronic Properties of Conjugated Oligomers

Abstract: Despite the remarkable progress of machine learning (ML) techniques in chemistry, modeling the optoelectronic properties of long conjugated oligomers and polymers with ML remains challenging due to the difficulty in obtaining sufficient training data. Here we use transfer learning to address the data scarcity issue by pre-training graph neural networks using data from short oligomers. With only a few hundred training data, we are able to achieve an average error of about 0.1 eV for excited state energy of olig… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 21 publications
0
0
0
Order By: Relevance