Electronic band structure and optical properties of zinc monochalcogenides with zinc-blende-and wurtzite-type structures were studied using the ab initio density functional method within the LDA, GGA, and LDA+U approaches. Calculations of the optical spectra have been performed for the energy range 0-20 eV, with and without including spin-orbit coupling. Reflectivity, absorption and extinction coefficients, and refractive index have been computed from the imaginary part of the dielectric function using the Kramers-Kronig transformations. A rigid shift of the calculated optical spectra is found to provide a good first approximation to reproduce experimental observations for almost all the zinc monochalcogenide phases considered. By inspection of the calculated and experimentally determined band-gap values for the zinc monochalcogenide series, the band gap of ZnO with zinc-blende structure has been estimated.