Mn(+)-implanted, amorphous SiO(2) samples were synthesized using pulsed-ion implantation without thermal annealing. The crystal and electronic structures have been studied using x-ray diffraction and synchrotron-based soft x-ray absorption and emission spectroscopy at the Si and Mn L(2,3) edges. We find a combination of small MnO clusters and Si crystallites at shallow depths while tetrahedral Mn coordination is found deeper in the host target. Through a combination of techniques, we find that the implantation process simultaneously decreases the long-range order in the near-surface region and increases order deeper in the SiO(2) host. Our results suggest Mn substitution into Si sites at deep levels catalyzes the formation of α-quartz, providing insight into the complex interactions that determine the local structure around the impurities as well as the overall changes to the crystallinity of implanted SiO(2).