Gd2InSbO7 and Gd2FeSbO7 were synthesized first, and their structural and photocatalytic properties were studied. The lattice parameters and the band gaps for Gd2InSbO7 and Gd2FeSbO7 were 10.449546 Å, 10.276026 Å, 2.897 eV and 2.151 eV. The photocatalytic degradation of rhodamine B was performed with Gd2InSbO7 and Gd2FeSbO7 under visible light irradiation. Gd2InSbO7 and Gd2FeSbO7 had higher catalytic activity compared with Bi2InTaO7. Gd2FeSbO7 exhibited higher catalytic activity than Gd2InSbO7. The photocatalytic degradation of rhodamine B followed with the first-order reaction kinetics, and the first-order rate constant k was 0.01606, 0.02220 or 0.00329 min−1 with Gd2InSbO7, Gd2FeSbO7 or Bi2InTaO7 as photocatalyst. Complete removal of rhodamine B was observed after visible light irradiation for 225 min or 260 min with Gd2FeSbO7 or Gd2InSbO7 as photocatalyst. The evolution of CO2 was realized, and it indicated continuous mineralization of rhodamine B during the photocatalytic process. The possible photocatalytic degradation pathway of rhodamine B was proposed.