In the present work, the tangential (swirl) velocity component is superimposed at the intake of a narrow fluidic cylindrical pipe to achieve the desired mixing of inelastic non-Newtonian fluids/solutes at the outlet. We discuss an analytical method for obtaining the swirl velocity profile, considering the nonlinear viscous effects for both shear-thinning and shear-thickening fluids, represented by the power-law model. We numerically solve the species transport equation, coupled with the analytically derived swirl velocity, using our in-house developed code for the concentration distribution in the flow field. The results show that the inlet swirl and an increase in the shear-thinning fluid property improve advection-dominated mixing. Additionally, higher Reynolds numbers significantly enhance advection's dominance, as more rotation leads to the generation of vortices, resulting in an engulfment flow (chaotic convection) based mixing. We demonstrate that considering the increase in the shear-thinning fluid property with swirl intake reduces the amount of mixing time required in the convective regime.