In this study, chitosan/bioactive glass (BG)/lawsone coatings were deposited by electrophoretic deposition (EPD) on polyetheretherketone (PEEK)/BG layers (previously deposited by EPD on 316-L stainless steel) to produce bioactive and antibacterial coatings. First, the EPD of chitosan/BG/lawsone was optimized on stainless steel in terms of suspension stability, homogeneity and thickness of coatings. Subsequently, the optimized EPD parameters were used to produce bioresorbable chitosan/bioactive glass (BG)/lawsone coatings on PEEK/BG layers. The produced layered coatings were characterized in terms of composition, microstructure, corrosion resistance, in vitro bioactivity, drug release kinetics and antibacterial activity. Ultraviolet/Visible (UV/VIS) spectroscopic analyses confirmed the release of lawsone from the coatings. Moreover, the deposition of chitosan/BG coatings was confirmed by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR). The coated specimens presented higher corrosion resistance (10 times) in comparison to that of bare 316-L stainless steel and showed convenient wettability for initial protein attachment. The presence of lawsone in the top layer provided antibacterial effects against Staphylococcus carnosus. Moreover, the developed coatings formed apatite-like crystals upon immersion in simulated body fluid, indicating the possibility of achieving close interaction between the coating surface and bone. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3111-3122, 2018.