We numerically study herein the AC electrokinetic motion of Janus mobile microelectrode (ME) arrays in electrolyte solution in a wide field frequency, which holds great potential for biomedical applications. A fully coupled physical model, which incorporates the fluid-structure interaction under the synergy of induced-charge electroosmotic (ICEO) slipping and interfacial Maxwell stress, is developed for this purpose. A freely suspended Janus cylinder free from buoyancy, whose main body is made of polystyrene, while half of the particle surface is coated with a thin conducting film of negligible thickness, will react actively on application of an AC signal. In the low-frequency limit, induced-charge electrophoretic (ICEP) translation occurs due to symmetric breaking in ICEO slipping, which renders the insulating end to move ahead. At higher field frequencies, a brand-new electrokinetic transport phenomenon called “ego-dielectrophoresis (e-DEP)” arises due to the action of the localized uneven field on the inhomogeneous particle dipole moment. In stark contrast with the low-frequency ICEP translation, the high-frequency e-DEP force tends to drive the asymmetric dipole moment to move in the direction of the conducting end. The bidirectional transport feature of Janus microspheres in a wide AC frequency range can be vividly interpreted as an array of ME for continuous loading of secondary bioparticles from the surrounding liquid medium along its direction-controllable path by long-range electroconvection. These results pave the way for achieving flexible and high-throughput on-chip extraction of nanoscale biological contents for subsequent on-site bioassay based upon AC electrokinetics of Janus ME arrays.