The rigorous environmental requirements promote the development of new processes with short and clean technical routes for recycling tellurium from tellurium-bearing sodium carbonate slag. In this paper, a novel process for selective recovery of tellurium from the sodium carbonate slag by sodium sulfide leaching, followed by cyclone electrowinning, was proposed. 88% of tellurium was selectively extracted in 40 g/L Na2S solution at 50 °C for 60 min with a liquid to solid ratio of 8:1 mL/g, while antimony, lead and bismuth were enriched in the leaching residue. Tellurium in the leach liquor was efficiently electrodeposited by cyclone electrowinning without purification. The effects of current density, temperature and flow rate of the electrolyte on current efficiency, tellurium recovery, cell voltage, energy consumption, surface morphology, and crystallographic orientations were systematically investigated. 91.81% of current efficiency and 95.47% of tellurium recovery were achieved at current density of 80 A/m2, electrolyte temperature of 45 °C and electrolyte flow rate of 400 L/h. The energy consumption was as low as 1.81 kWh/kg. A total of 99.38% purity of compact tellurium deposits were obtained. Therefore, the proposed process may serve as a promising alternative for recovering tellurium from tellurium-bearing sodium carbonate slag.