In many small and medium-sized businesses in rural–urban areas, delivery services to and from customers, suppliers, and distributed locations are required regularly. In contrast to purely urban commercial centres, the distances here are larger. The aim of this paper is to identify opportunities for substituting combustion-engine logistics with lightweight electric commercial vehicles and the limitations thereto, describing an energy efficiency comparison and improvement process for a defined logistics application. Thus, the area of Heilbronn-Franconia and its transport conditions are presented as examples to compare the use case to standard driving cycles. Then the logistic requirements of Heilbronn UAS (University of Applied Science) locations and the available vehicles as well as further electric vehicle options are depicted. Options are discussed for the additional external payload in search of transport volume optimisation without increasing the vehicle floor space. To this end, simulation models are developed for the aerodynamic examination of the enlarged vehicle body and for determining energy consumption. Consumption and range calculation lead to vehicle concept recommendations. These research activities can contribute to the transformation of commercial electro mobility in rural and urban areas in many parts of Germany and Europe.