Purpose Water can alter the performance of modern gear lubricants by influencing the flank load carrying capacity of gears significantly. The purpose of this paper is to investigate the influence of water contaminations in different kinds of base oils on the micro-pitting and wear performance of case carburized gears. Design/methodology/approach Concerning micro-pitting and wear, tests, based mostly on the following standardized tests, are performed on a Forschungsstelle fuer zahnraeder und getriebebau (FZG)-back-to-back gear test rig: micro-pitting short test Graufleckenkurztest (GFKT) according to DGMK 575 (screening test), micro-pitting test Graufleckentest (GT) according to FVA 54/7 (load stage test and endurance test) and Slow-speed wear test according to DGMK 377. To investigate the effect of water on the gear load carrying capacity dependent on different types of base oils, two polyglycol oils (PG1 and PG2), a polyalphaolefin oil, a mineral oil and an ester oil E are used. Each of these oils are common wind turbine gear oils with a viscosity ISO VG-220. Additionally, a manual transmission fluid with a viscosity of society of automotive engineers (SAE) 75W-85 is tested. Findings Considering the micro-pitting and wear performance, a significant decrease caused by water contaminations could not be detected. Regarding pitting damages, a generally negative influence was observed. This influence was differently distinctive for different base oil types. Especially non-polar lubricants seem to be affected negatively. The documented damages of the tooth flanks confirm this observation. While typical pitting damages appeared in test runs with polar lubricants, the disruption in test runs with non-polar lubricants was more extensive. Based on the experimental investigations, a general model of the damaging mechanisms of water contaminations in lubricants was derived. It is split into three partitions: interaction lubricant–water (effect of water on the molecular structure of base oils and additives), chemical-material-technological (especially corrosive reactions) and tribological influence (effect of water droplets in the contact zone). It has to be considered that the additive package of lubricants affects the influence of water contaminations on the flank load carrying capacity distinctively. An influence of water on the micro-pitting and wear performance in other than the given lubricants cannot be excluded. Originality/value While former research work was focused more on the effects of water in mineral oils, investigations concerning different types of base oils as well as different types of damages were carried out within this research project.
In various gear applications, water contaminated lubricants are a well known problem leading to a significantly decreased lubricant performance under certain circumstances. In FVA-research projects 488/I and 488/II (FVA-Forschungsvereinigung Antriebstechnik: German research association for transmission technology) the influence of a defined water content ranging from 1 000 ppm to 20 000 ppm in typical gear lubricants on the pitting load carrying capacity of case carburized gears was investigated. Regarding the test series with a relatively high water content from 5 000 to 20 000 ppm, a generally negative influence was observed. This influence was differently distinctive for the investigated base oil types. Especially non-polar lubricants were affected negatively. Subsequently, non-polar lubricants, such as polyalphaolefines and mineral oils, were chosen for further investigations as the water content was also lowered on more practice-relevant levels ranging from 1 000 to 2 900 ppm. The water contamination still influenced the pitting load carrying capacity in the upper range with water contents resulting in a relative humidity significantly higher than 100% (absolute water contents from 2250 to 2900 ppm). At the level of 1 000 ppm (rel. humidity approx. ≥ 100%), no significant influence was detected. Thus, it was possible to derive critical threshold limits for the water contamination of non-polar lubricants in practical applications, as from which, the water contamination may affect the pitting load capacity. The water-induced reduction of the pitting load carrying capacity seems to be primarily dependent on the blended additives. The used non-polar base oil type only had a subordinated impact. Based on the results of theoretical investigations, it was possible to derive and expand a general model of damaging mechanisms of water contamination in lubricants, which is split into: interaction lubricant-water, chemical-material-technological influence and tribological influence. In short, it describes the possible impact of water contamination on the lubricant, the material and lubricating-film properties. The results of additional measurements indicate some damaging mechanisms to be dominant under the herein performed test conditions. In detail, decomposition effects of additive components and an increased oil aging effect were identified to be crucial factors, while the influence on the material properties like the measured residual stresses in the gear material seemed to be subordinated. Undissolved water is supposed to affect the pitting load carrying capacity more negatively than dissolved water. Therefore, the relative humidity is recommended as a suitable characteristic of lubricants to evaluate, whether measured water contents in practical gearbox applications may lead to a reduced pitting performance. Based on the results of the experimental and theoretical investigations a threshold limit for the relative humidity of 100 % appears to be reasonable, given that the additive system of the lubricants is not affected negatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.