In this experiment, inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) was used to determine the content of 30 elements in rice from six places of production and to explore the relationship between the multielement content in rice and the producing area. The contents of Ca, P, S, Zn, Cu, Fe, Mn, K, Mg, Na, Ge, Sb, Ba, Ti, V, Se, As, Sr, Mo, Ni, Co, Cr, Al, Li, Cs, Pb, Cd, B, In, and Sn in rice were determined by ICP-MS/MS in the SQ and MS/MS mode. By passing H2, O2, He, and NH3/He reaction gas into the ICP-MS/MS, respectively, the interference was eliminated by means of in situ mass spectrometry and mass transfer. The detection limit of each element was 0.0000662–0.144 mg/kg, and the limit of quantification was in the range of 0.000221–0.479 mg/kg, the linear correlation coefficient was greater or equal to 0.9987 (R2 ≥ 0.9987), and the detection results had low detection limit and great linear regression. Recovery of the method was in the range of 80.6% to 110.5% with spike levels of 0.10–100.00 mg/kg, and relative standard deviations were lower than 10%. For the multielement content of rice from different producing areas, the principal component factor analysis can get six principal component factors, 87.878% cumulative contribution rate, and the distribution of the principal component scores of each element and different producing areas. Based on the multielement content and cluster analysis, the samples were accurately divided into two major categories and six subcategories according to the places of production, which proved that there was a significant correlation between the multielement content in rice and the place of production, so that the place of rice origin can be traced.