In the solid state, OP[N(H)Me](3) (1a) and OP[N(H)(t)Bu](3) (1b) have hydrogen-bonded structures that exhibit three-dimensional and one-dimensional arrays, respectively. The lithiation of 1b with 1 equiv of (n)BuLi generates the trimeric monolithiated complex (THF)[LiOP(N(t)Bu)[N(H)(t)Bu](2)](3) (4), whereas reaction with an excess of (n)BuLi produces the dimeric dilithium complex [(THF)(2)Li(2)OP(N(t)Bu)(2)[N(H)(t)Bu]](2) (5). Complex 4 contains a Li(2)O(2) ring in an open-ladder structure, whereas 5 embraces a central Li(2)O(2) ring in a closed-ladder arrangement. Investigations of the lithiation of tris(alkyl or arylamido)thiophosphates, SP[N(H)R](3) (2a, R = (i)Pr; 2b, R = (t)Bu; 2c, R = p-tol) with (n)BuLi reveal interesting imido substituent effects. For the alkyl derivatives, only mono- or dilithiation is observed. In the case of R = (t)Bu, lithiation is accompanied by P-S bond cleavage to give the dilithiated cyclodiphosph(V/V)azane [(THF)(2)Li(2)[((t)BuN)(2)P(micro-N(t)Bu)(2)P(N(t)Bu)(2)]] (9). Trilithiation occurs for the triaryl derivatives EP[N(H)Ar](3) (E = S, Ar = p-tolyl; E = Se, Ar = Ph), as demonstrated by the preparation of [(THF)(4)Li(3)[SP(Np-tol)(3)]](2) (10) and [(THF)(4)Li(3)[SeP(NPh)(3)]](2) (11), which are accompanied by the formation of small amounts of 10.[LiOH(THF)](2) and 11.Li(2)Se(2)(THF)(2), respectively.