2006
DOI: 10.1088/0305-4470/39/39/s05
|View full text |Cite
|
Sign up to set email alerts
|

Elliptic Schlesinger system and Painlevé VI

Abstract: We construct an elliptic generalization of the Schlesinger system (ESS) with positions of marked points on an elliptic curve and its modular parameter as independent variables (the parameters in the moduli space of the complex structure). ESS is a non-autonomous Hamiltonian system with pair-wise commuting Hamiltonians. The system is bihamiltonian with respect to the linear and the quadratic Poisson brackets. The latter are the multi-color generalization of the Sklyanin-Feigin-Odeskii classical algebras. We giv… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
7
0
4

Year Published

2007
2007
2013
2013

Publication Types

Select...
10

Relationship

0
10

Authors

Journals

citations
Cited by 21 publications
(11 citation statements)
references
References 19 publications
(15 reference statements)
0
7
0
4
Order By: Relevance
“…Should we introduce higher order Painlevé ODE's (in analogy to the higher order KdV generalization of KdV) ? Should we consider Garnier systems [5], or even, more general Schlesinger systems [6,7] ? This paper is organized as follows.…”
Section: Introductionmentioning
confidence: 99%
“…Should we introduce higher order Painlevé ODE's (in analogy to the higher order KdV generalization of KdV) ? Should we consider Garnier systems [5], or even, more general Schlesinger systems [6,7] ? This paper is organized as follows.…”
Section: Introductionmentioning
confidence: 99%
“…Настоящая работа посвящена изучению с помощью предельных процедур различных способов вырождения эллиптического обобщения [1]- [4] системы Шлезингера [5] и неавтономного эллиптического SL(N, C)-волчка. Рассматриваемые в настоящей работе методы построения предельных процедур могут быть обобщены на связанные с эллиптической системой Шлезингера уравнения Пенлеве и интегрируемые системы, возникающие в разных областях теоретической физики.…”
Section: Introductionunclassified
“…For arbitrary characteristic classes these type of models were described in [45]. Different aspects and applications of the Hecke transformations to integrable systems and related topics (such as Painlevé-Schlesinger equations [2,15,50,51,60,67,68,71], monopoles [14,25,31,37,39,49,58], quadratic Poisson structures [13,74], applications to AGT conjecture [53,54,55] etc.) can be found in wide range of literature.…”
Section: Introductionmentioning
confidence: 99%