The ability to devise and design multifunctional active sites at the nanoscale, by drawing on the intricate ability of enzymes to evolve single-sites with distinctive catalytic function, has prompted complimentary and concordant developments in the field of catalyst design and in situ operando spectroscopy. Innovations in design-application approach have led to a more fundamental understanding of the nature of the active site and its mechanistic influence at a molecular level, that have enabled robust structure-property correlations to be established, which has facilitated the dextrous manipulation and predictive design of redox and solid -acid sites for industrially-significant, sustainable catalytic transformations.