This paper reports on the thermal properties of reduced graphite oxide (RGO) flakes, studied by means of scanning thermal microscopy (SThM). This technique was demonstrated to allow thermal characterization of the flakes with a spatial resolution of the order of a few tens of nanometers, while recording nanoscale topography at the same time. Several individual RGO flakes were analyzed by SThM, both as obtained after conventional thermal reduction and after a subsequent annealing at 1700°C. Significant differences in the thermal maps were observed between pristine and annealed flakes, reflecting higher heat dissipation on annealed RGO flakes compared with pristine ones. This result was correlated with the reduction of RGO structure defectiveness. In particular, a substantial reduction of oxidized groups and sp 3 carbons upon annealing was proven by X-ray photoelectron and Raman spectroscopies, while the increase of crystalline order was demonstrated by X-ray diffraction, in terms of higher correlation lengths both along and perpendicular to the graphene planes. Results presented in this paper provide experimental evidence for the qualitative correlation between the defectiveness of graphene-related materials and their thermal conductivity, which is clearly crucial for the exploitation of these materials into thermally conductive nanocomposites.©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
In this work, electrically and thermally conductive poly (butylene terephthalate) nanocomposites were prepared by in-situ ring-opening polymerization of cyclic butylene terephthalate (CBT) in presence of a tin-based catalyst. One type of graphite nanoplatelets (GNP) and two different grades of reduced graphene oxide (rGO) were used. Furthermore, high temperature annealing treatment under vacuum at 1700°C was carried out on both RGO to reduce their defectiveness and study the correlation between the electrical/thermal properties of the nanocomposites and the nanoflakes structure/defectiveness. The morphology and quality of the nanomaterials were investigated by means of electron microscopy, x-ray photoelectron spectroscopy, thermogravimetry and Raman spectroscopy. Thermal, mechanical and electrical properties of the nanocomposites were investigated by means of rheology, dynamic mechanical thermal analysis, volumetric resistivity and thermal conductivity measurements. Physical properties of nanocomposites were correlated with the structure and defectiveness of nanoflakes, evidencing a strong dependence of properties on nanoflakes structure and defectiveness. In particular, a significant enhancement of both thermal and electrical conductivities was demonstrated upon the reduction of nanoflakes defectiveness.
To reduce the emissions of internal combustion engines, ceria-based catalysts have been widely investigated as possible alternatives to the more expensive noble metals. In the present work, a set of four different ceria-based materials was prepared via hydrothermal synthesis, studying the effect of Cu and Mn as dopants both in binary and ternary oxides. In situ Raman analyses were carried out to monitor the behaviour of defect sites throughout thermal cycles and during the soot oxidation reaction. Despite ceria doped with 5% of Cu featured the highest specific surface area, reducibility and amount of intrinsic and extrinsic defects, a poor soot oxidation activity was observed through the standard activity tests. This result was confirmed by the calculation of soot conversion curves obtained through a newly proposed procedure, starting from the Raman spectra collected during the in situ tests. Moreover, Raman analyses highlighted that new defectiveness was produced on the Cu-doped catalyst at high temperature, especially after soot conversion, while a slight increase of the defect band and a total reversibility were observed in case of the ternary oxide and pure/Mn-doped ceria, respectively. The major increment was related to the extrinsic defects component; tests carried out in different atmospheres suggested the assignment of this feature to vacancy-free sites containing oxidized doping cations. Its increase at the end of the tests can be an evidence of peroxides and superoxides deactivation on catalysts presenting excessive oxygen vacancy concentrations. Instead, ceria doped with 5% of Mn exhibited the best soot oxidation activity, thanks to an intermediate density of oxygen vacancies and to its well-defined morphology.
Surface-enhanced Raman scattering (SERS) is a powerful and sensitive technique for the detection of fingerprint signals of molecules and for the investigation of a series of surface chemical reactions. Many studies introduced quantitative applications of SERS in various fields, and several SERS methods have been implemented for each specific application, ranging in performance characteristics, analytes used, instruments, and analytical matrices. In general, very few methods have been validated according to international guidelines. As a consequence, the application of SERS in highly regulated environments is still considered risky, and the perception of a poorly reproducible and insufficiently robust analytical technique has persistently retarded its routine implementation. Collaborative trials are a type of interlaboratory study (ILS) frequently performed to ascertain the quality of a single analytical method. The idea of an ILS of quantification with SERS arose within the framework of Working Group 1 (WG1) of the EU COST Action BM1401 Raman4Clinics in an effort to overcome the problematic perception of quantitative SERS methods. Here, we report the first interlaboratory SERS study ever conducted, involving 15 laboratories and 44 researchers. In this study, we tried to define a methodology to assess the reproducibility and trueness of a quantitative SERS method and to compare different methods. In our opinion, this is a first important step toward a “standardization” process of SERS protocols, not proposed by a single laboratory but by a larger community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.