Purpose: Cryotherapy of localized prostate, renal, and hepatic primary tumors and metastases is considered a minimally invasive treatment demonstrating a low complication rate in comparison with conventional surgery. The main drawback of cryotherapy is that it has no systemic effect on distant metastases. We investigated whether intratumoral injections of dendritic cells following cryotherapy of local tumors (cryoimmunotherapy) provides an improved approach to cancer treatment, combining local tumor destruction and systemic anticancer immunity. Experimental Designs: The 3LL murine Lewis lung carcinoma clone D122 and the ovalbumintransfected B16 melanoma clone MO5 served as models for spontaneous metastasis. The antimetastatic effect of cryoimmunotherapy was assessed in the lung carcinoma model by monitoring mouse survival, lung weight, and induction of tumor-specific CTLs. The mechanism of cryoimmunotherapy was elucidated in the melanoma model using adoptive transfer of T cell receptor transgenic OT-I CTLs into the tumor-bearing mice, and analysis of Th1/Th2 responses by intracellular cytokine staining in CD4 and CD8 cells. Results: Cryoimmunotherapy caused robust and tumor-specific CTL responses, increased Th1 responses, significantly prolonged survival and dramatically reduced lung metastasis. Although intratumor administration of dendritic cells alone increased the proliferation rate of CD8 cells, only cryoimmunotherapy resulted in the generation of effector memory cells. Furthermore, cryoimmunotherapy protected mice that had survived primary MO5 tumors from rechallenge with parental tumors. Conclusions: These results present cryoimmunotherapy as a novel approach for systemic treatment of cancer. We envisage that cryotherapy of tumors combined with subsequent in situ immunotherapy by autologous unmodified immature dendritic cells can be applied in practice.Minimally invasive therapies are an alternative approach to surgical intervention in the treatment of malignant diseases. Cryoablation, i.e., tissue destruction by repeated deep freezing and thawing, is under the larger category of thermal therapy and, during the past decade, it has become an acceptable clinical tool for the management of dermatologic tumors, hepatocellular carcinoma, renal and prostate tumors, and hepatic colorectal metastases (1, 2). Compared with surgical excision, the main advantages are the potential for less invasiveness resulting in reduced mortality and morbidity, and the ability to perform ablative procedures on outpatients, which decreases the treatment cost. In the case of hepatic colorectal metastases, the use of cryosurgery improves the percentages of resectability (2). A comparative study on domestic pigs showed that the cryoablation of renal parenchyma is beneficial over other necrosis-inducing ablations such as microwave thermoablation, radiofrequency energy, and chemoablation by ethanol, hypertonic saline, and acetic acid gels, in terms of reproducibility, consistency in size and shape, and the ability to monitor b...