Serum proteins affect the in vivo fate and cellular uptake of arginine-rich cell-penetrating peptides (CPPs) and drugs delivered by CPPs. Although the binding of CPPs to serum proteins may possibly reduce their cellular uptake to some extent, it may also prolong their circulation half-life in vivo. We aimed to identify novel binding proteins of arginine-rich CPPs in serum to better understand their in vivo fate and develop more sophisticated drug delivery systems using CPPs. Isothermal titration calorimetry analysis suggests that albumin, the most abundant protein in serum, binds to D-forms of oligoarginine; however, the dissociation constants are several tens of a micromolar. Candidate proteins with the potential of binding to arginine-rich CPPs in serum were then explored using nondenaturing polyacrylamide gel electrophoresis followed by mass spectrometry analysis. Studies using fluorescence correlation spectroscopy determined hemopexin as a potential binding partner of D-forms of arginine-rich CPPs, including D-octaarginine (r 8 ) and the D-form of the peptide, corresponding to HIV-1 Rev (34−50), with dissociation constants of submicromolar to micromolar range. Using flow cytometry and a split-luciferase-based system, the promotion effect of hemopexin on the total cellular uptake and cytosolic localization of cargos conjugated with these CPPs was confirmed. Therefore, this study elucidated hemopexin as a potential binding partner of D-arginine-rich CPPs that may affect their in vivo fate and cellular uptake.