Despite extensive use of arginine-rich cell-penetrating peptides (CPPs)-including octaarginine (R8)-as intracellular delivery vectors, mechanisms for their internalization are still under debate. Lipid packing in live cell membranes was characterized using a polarity-sensitive dye (di-4-ANEPPDHQ), and evaluated in terms of generalized polarization. Treatment with membrane curvature-inducing peptides led to significant loosening of the lipid packing, resulting in an enhanced R8 penetration. Pyrenebutyrate (PyB) is known to facilitate R8 membrane translocation by working as a hydrophobic counteranion. Interestingly, PyB also actively induced membrane curvature and perturbed lipid packing. R8 is known to directly cross cell membranes at elevated concentrations. The sites of R8 influx were found to have looser lipid packing than surrounding areas. Lipid packing loosening is proposed as a key factor that governs the membrane translocation of CPPs.
Many membrane proteins are proposed to work as oligomers; however, the conclusion is sometimes controversial, as for β2-adorenergic receptor (β2AR), which is one of the best-studied family A G-protein-coupled receptors. This is due to the lack of methods for easy and precise detection of the oligomeric state of membrane proteins on living cells. Here, we show that a combination of the coiled-coil tag-probe labeling method and spectral imaging enable a stoichiometric analysis of the oligomeric state of membrane proteins on living cells using monomeric, dimeric, and tetrameric standard membrane proteins. Using this method, we found that β2ARs do not form constitutive homooligomers, while they exhibit their functions such as the cyclic adenosine 5'-monophosphate (cAMP) signaling and internalization upon agonist stimulation.
All-hydrocarbon stapled peptides make up a promising class of protein-protein interaction regulators; their potential therapeutic benefit arises because they have a high binding affinity and specificity for intracellular molecules. The cell permeation efficacy of these peptides is a critical determinant of their bioactivity. However, the factors that determine their cellular uptake remain an active area of research. In this study, we evaluated the effect of stapled (or cross-linked) formation on the cellular uptake of six known all-hydrocarbon stapled peptides. We found that the rate of cellular uptake of unstapled peptides (i.e., those bearing olefinic non-natural amino acids that are not subjected to olefin metathesis) was higher than that for the corresponding stapled peptides. Additionally, the insertion of these olefinic non-natural amino acids into peptide sequences significantly increased their rate of cellular uptake. According to the high-performance liquid chromatography retention times, the overall hydrophobicity of unstapled peptides was greater than that of stapled peptides, followed by that of the original peptides without olefinic non-natural amino acids. There was not a close correlation between helical content and the rate of cellular uptake of these peptides. Therefore, the increase in overall hydrophobicity resulting from the introduction of non-natural amino acids, rather than the structural stabilization resulting from staple formation, is the key driver promoting cellular uptake. Macropinocytosis, a form of fluid-phase endocytosis, was involved in the cellular uptake of all six peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.