Background:The objective of the current study was to explore the role of H19 rs217727 polymorphism in the control of hepatocellular carcinoma (HCC).
Method: The Student's t test, Cox regression, and Kaplan-Meier analyses were used to clarify whether the H19 rs217727 polymorphism played an important role in the development of HCC. Real-time polymerase chain reaction (PCR) and western-blot analysis were carried out to measure the levels of H19, microRNA (miR)-675, FAS-associated death domain (FADD), caspase-8, and caspase-3 among H19 CC, CT, and TT groups, as well as in cells transfected with H19/si-H19, or miR-675 mimic/ inhibitor. The MTT assay, colony formation assay, and flow cytometry assay were performed to detect the effect of H19/miR-675 on cell viability, cell colony formation, and cell apoptosis. Result: T allele of H19 rs217727 polymorphism apparently increased the survival rate of patients with HCC. Meanwhile, H19 enhanced miR-675 expression but reduced the mRNA and protein levels of FADD, caspase-3, and caspase-8. The T allele of H19 rs217727 polymorphism apparently increased the apoptotic rate of HCC cells. Furthermore, FADD was a virtual target gene of miR-675 with a potential "hit" located in the 3′-untranslated region (UTR) of FADD, whereas H19 inhibited FADD expression via increasing the expression of miR-675. Moreover, H19 upregulated the expression of miR-675 whereas reducing the expression of FADD, caspase-3, and caspase-8. Finally, H19 and miR-675 promoted cell proliferation and cell colony formation but repressed cell apoptosis.