1997
DOI: 10.1002/9780470141601.ch20
|View full text |Cite
|
Sign up to set email alerts
|

Emergence of Classical Periodic Orbits and Chaos in Intramolecular and Dissociation Dynamics

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
13
0
1

Year Published

1998
1998
2014
2014

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 12 publications
(14 citation statements)
references
References 231 publications
0
13
0
1
Order By: Relevance
“…The symbol ω k = 0 is associated with a passage close to the symmetricstretch periodic orbit and the symbols ω k = 1 or 2 with a passage near by either one or the other of the two Here, Et denotes the critical energy of two saddle-center tangent bifurcations preceding the subcritical pitchfork bifurcation at Ec. This scenario is observed to occur in the classical dynamics of CO2 [11,14].…”
Section: A Classical Dynamicsmentioning
confidence: 81%
See 3 more Smart Citations
“…The symbol ω k = 0 is associated with a passage close to the symmetricstretch periodic orbit and the symbols ω k = 1 or 2 with a passage near by either one or the other of the two Here, Et denotes the critical energy of two saddle-center tangent bifurcations preceding the subcritical pitchfork bifurcation at Ec. This scenario is observed to occur in the classical dynamics of CO2 [11,14].…”
Section: A Classical Dynamicsmentioning
confidence: 81%
“…All the periodic orbits are unstable of hyperbolic type if the invariant set is a fully chaotic saddle. Remarkably, such chaotic invariant sets may exist over large energy ranges in the dynamics of dissociating molecules such as HgI 2 or CO 2 [11][12][13][14]. These chaotic saddles appear after that the unique unstable periodic orbit existing at energies just above the saddle point has undergone bifurcations.…”
Section: A Classical Dynamicsmentioning
confidence: 99%
See 2 more Smart Citations
“…[4][5] Neste regime de intensidades, pode-se observar, em alguns materiais, processos ópticos não usuais como, por exemplo, geração de segundo harmônico, [6][7] auto-modulação de faze, etc. [8][9] Estes processos são conhecidos como efeitos ópticos não lineares. 5 A óptica não linear é o ramo da óptica que estuda a interação da luz com a matéria no regime onde a resposta do meio não é diretamente proporcional à intensidade do campo elétrico associado com a fonte luz.…”
Section: Introductionunclassified