Neurons in the dorsolateral prefrontal cortex (dlPFC) and posterior parietal cortex (PPC) are activated by different cognitive tasks and respond differently to the same stimuli depending on task. The conjunctive representations of multiple tasks in nonlinear fashion in single neuron activity, is known as nonlinear mixed selectivity (NMS). Here, we compared NMS in a working memory task in areas 8a and 46 of the dlPFC and 7a and lateral intraparietal cortex (LIP) of the PPC in macaque monkeys. NMS neurons were more frequent in dlPFC than in PPC and this was attributed to more cells gaining selectivity in the course of a trial. Additionally, in our task, the subjects’ behavioral performance improved within a behavioral session as they learned the session-specific statistics of the task. The magnitude of NMS in the dlPFC also increased as a function of time within a single session. On the other hand, we observed minimal rotation of population responses and no appreciable differences in NMS between correct and error trials in either area. Our results provide direct evidence demonstrating a specialization in NMS between dlPFC and PPC and reveal mechanisms of neural selectivity in areas recruited in working memory tasks.