Penciclovir (PCV), an antiherpesvirus agent in the same class as acyclovir (ACV), is phosphorylated in herpes simplex virus (HSV)-infected cells by the viral thymidine kinase (TK).Resistance to ACV has been mapped to mutations within either the TK or the DNA polymerase gene. An identical activation pathway, the similarity in mode of action, and the invariant cross-resistance of TK-negative mutants argue that the mechanisms of resistance to PCV and ACV are likely to be analogous. A total of 48 HSV type 1 (HSV-1) and HSV-2 isolates were selected after passage in the presence of increasing concentrations of PCV or ACV in MRC-5 cells. Phenotypic analysis suggested these isolates were deficient in TK activity. Moreover, sequencing of the TK genes from ACV-selected mutants identified two homopolymeric G-C nucleotide stretches as putative hot spots, thereby confirming previous reports examining Acv r clinical isolates. Surprisingly, mutations identified in PCV-selected mutants were generally not in these regions but distributed throughout the TK gene and at similar frequencies of occurrence within A-T or G-C nucleotides, regardless of virus type. Furthermore, HSV-1 isolates selected in the presence of ACV commonly included frameshift mutations, while PCV-selected HSV-1 mutants contained mostly nonconservative amino acid changes. Data from this panel of laboratory isolates show that Pcv r mutants share cross-resistance and only limited sequence similarity with HSV mutants identified following ACV selection. Subtle differences between PCV and ACV in the interaction with viral TK or polymerase may account for the different spectra of genotypes observed for the two sets of mutants.The introduction of penciclovir [PCV;9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine] and its prodrug, famciclovir, (FCV), resulted in the use of antivirals alternative to acyclovir (ACV) for treatment of herpes simplex virus (HSV) infections. Biochemical studies have indicated that PCV, like ACV, is phosphorylated by the viral thymidine kinase (TK) to a monophosphate and subsequently converted by cellular enzymes to a triphosphate, which inhibits the HSV DNA polymerase (Pol) (44). Although PCV and ACV have identical activation pathways and similar modes of action (14, 44), and the frequencies with which resistance in HSV arises to PCV and ACV in cell culture are identical (36), the affinities and therefore the fine molecular interactions of PCV, ACV, and their triphosphates with TK and Pol differ (14). The last point raises the possibility that drug-resistant mutants selected by these antiviral agents may differ.Resistance to acyclovir typically arises by a single mutation in either the TK or Pol gene (11,23,29). The viral TK, unlike DNA polymerase, is not essential for virus replication in cell culture (13), although in vivo analyses implicate it in HSV virulence, pathogenicity, and reactivation from latency (9,15,20,41). Mutations in HSV TK are the most common causes of clinical resistance to ACV (7,34), and the majority of mutants completely lac...