Abstract. We provide a detailed multiscale analysis of a system of particles interacting through a dynamical network of links. Starting from a microscopic model, via the mean field limit, we formally derive coupled kinetic equations for the particle and link densities, following the approach of [P. Degond, F. Delebecque, and D. Peurichard, Math. Models Methods Appl. Sci., 26 (2016), pp. 269-318]. Assuming that the process of remodeling the network is very fast, we simplify the description to a macroscopic model taking the form of a single aggregation-diffusion equation for the density of particles. We analyze qualitatively this equation, addressing the stability of a homogeneous distribution of particles for a general potential. For the Hookean potential we obtain a precise condition for the phase transition, and, using the central manifold reduction, we characterize the type of bifurcation at the instability onset.