Pyroptosis, a type of programmed cell death mediated by gasdermin, is characterized by the swelling and rupture of cells, release of cellular contents and a strong inflammatory response, which is critical for controlling microbial infection. Pattern recognition receptors recognize the intracellular and extracellular pathogenic microbial components and stimulate the organism's inflammatory response by activating the pyroptosis signaling pathway and releasing interleukin‐1β (IL‐1β), IL‐18, and other inflammatory factors to promote pathogen clearance and prevent infection. In the process of continuous evolution, pathogens have developed multiple strategies to modulate the occurrence of pyroptosis and thus enhance their ability to induce disease; that is, the competition between host cells and pathogens controls the occurrence of pyroptosis. Competition can directly affect tissue inflammation outbreaks and even alter cell survival. Studies have shown that various bacterial infections, including Shigella flexneri, Salmonella, Listeria monocytogenes, and Legionella pneumophila, can lead to pyroptosis. Pyroptosis is associated with the occurrence and development of various diseases caused by microbial infection, and the identification of molecules related to the pyroptosis signaling pathway may provide new drug targets for the treatment of related diseases. This study reviews the molecular mechanisms of pyroptosis and the role of pyroptosis in microbial infection‐related diseases.