“…Among various 2D materials, MoS 2 has shown excellent properties in optoelectronic applications due to its suitable band gap value,5, 6 relatively high carrier mobility,2, 7 high light absorbance,3, 8 and, more importantly, good stability,9, 10 and brilliant optoelectronic properties 1, 7, 11, 12. However, pure MoS 2 ‐based optoelectronic devices are usually limited to infrared light detection and lower photoelectric conversion efficiency (PCE) because of the direct band gap of 1.8 eV for single‐layered MoS 2 sheet5, 6 and the picosecond ultrashort carrier lifetime 13, 14. To conquer the drawbacks of wavelength and lifetime limitations, van der Waals heterostructures,15 or lateral heterostructures,16, 17 which are made by stacking a monolayer on the top of another monolayer or a few‐layer crystal or controlled by epitaxial growth of lateral heterojunction, are developed and show great potential for designing high‐performance 2D material‐based photodetectors owing to the combined advantages and synergetic effects of different 2D materials with various band gaps and work functions,18, 19, 20 and the ultrafast layer‐to‐layer transfer speed of carriers 21.…”