Electromyography (EMG) is a simple, non-invasive, and cost-effective technology for sensing muscle activity. However, EMG is also noisy, complex, and high-dimensional. It has nevertheless been widely used in a host of human-machine-interface applications (electrical wheelchairs, virtual computer mice, prosthesis, robotic fingers, etc.) and in particular to measure reaching and grasping motions of the human hand. Here, we developd a more automated pipeline to predict object weight in a reach-and-grasp task from an open dataset relying only on EMG data. In that we shifted the focus from manual feature-engineering to automated feature-extraction by using raw (filtered) EMG signals and thus letting the algorithms select the features. We further compared intrinsic EMG features, derived from several dimensionality-reduction methods, and then ran some classification algorithms on these low-dimensional representations. We found that the Laplacian Eigenmap algorithm generally outperformed other dimensionality-reduction methods. What is more, optimal classification accuracy was achieved using a combination of Laplacian Eigenmaps (simple-minded) and k-Nearest Neighbors (88% for 3-way classification). Our results, using EMG alone, are comparable to others in the literature that used EMG and EEG together. They also demonstrate the usefulness of dimensionality reduction when classifying movement based on EMG signals and more generally the usefulness of EMG for movement classification.