a b s t r a c tThis overview presents computational algorithms for generating 3D object grasps with autonomous multi-fingered robotic hands. Robotic grasping has been an active research subject for decades, and a great deal of effort has been spent on grasp synthesis algorithms. Existing papers focus on reviewing the mechanics of grasping and the finger-object contact interactions Bicchi and Kumar (2000) [12] or robot hand design and their control Al-Gallaf et al. (1993) [70]. Robot grasp synthesis algorithms have been reviewed in Shimoga (1996) [71], but since then an important progress has been made toward applying learning techniques to the grasping problem. This overview focuses on analytical as well as empirical grasp synthesis approaches.
In everyday life, people use a large diversity of hands configurations while reaching out to grasp an object. They tend to vary their hands position/orientation around the object and their fingers placement on its surface according to the object properties such as its weight, shape, friction coefficient and the task they need to accomplish. Taking into account these properties, we propose a method for generating such a variety of good grasps that can be used for the accomplishment of many different tasks. Grasp synthesis is formulated as a single constrained optimization problem, generating grasps that are feasible for the hand's kinematics by minimizing the norm of the joint torque vector of the hand ensuring grasp stability. Given an object and a kinematic hand model, this method can easily be used to build a library of the corresponding object possible grasps. We show that the approach is adapted to different representations of the object surface and different hand kinematic models.
Abstract-In this paper, we propose a new method for the motion planning problem of rigid object dexterous manipulation with a robotic multi-fingered hand, under quasi-static movement assumption. This method computes both object and finger trajectories as well as the finger relocation sequence. Its specificity is to use a special structuring of the research space that allows to search for paths directly in the particular subspace GSn which is the subspace of all the grasps that can be achieved with n grasping fingers. The solving of the dexterous manipulation planning problem is based upon the exploration of this subspace. The proposed approach captures the connectivity of GSn in a graph structure. The answer of the manipulation planning query is then given by searching a path in the computed graph. Simulation experiments were conducted for different dexterous manipulation task examples to validate the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.