In a continuous neat supersonic expansion ammonia clusters are generated and doped with sodium atoms in a pickup cell. Thus clusters of the form Na(NH(3))(n) are produced that are photoionized by a tunable dye laser system. The ions are mass analyzed in a reflectron time-of-flight mass spectrometer, and the wavelength dependent ion signals serve for the determination of the ionization potentials (IP) of the different clusters in the size range 10< or =n< or =1500. Aside from a plateau for 10< or =n< or =17 and smaller steps at n=24, 35, and 59 on the average a continuous decrease of the IP with cluster size is observed. The IPs in this size range are linear with (n+1)(-13) and extrapolate to IP(n=infinity)=1.66+/-0.01 eV. The slope is consistent with a dielectric continuum model of the solvated electron and the dielectric constant of the solid. The extrapolated IPs are compared with results obtained for negative ammonia cluster ions and metallic solutions in liquid ammonia. Differences are explained by the presence of counterions and their various distances from the solvated electron.