2021
DOI: 10.1016/j.asoc.2021.107752
|View full text |Cite
|
Sign up to set email alerts
|

Emotion classification on eye-tracking and electroencephalograph fused signals employing deep gradient neural networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
9
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 25 publications
(11 citation statements)
references
References 47 publications
(37 reference statements)
0
9
0
2
Order By: Relevance
“…Many previous studies have reported the differences between healthy and abnormal groups in frequency domain [46,47]. To explore the differences in network patterns be-tween DE and HC groups in frequency bands, the preprocessed EEG signals were firstly filtered into delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-50 Hz) bands using a Chebyshev filter [48][49][50]. The band-pass filtering process involves first passing through a low-pass filter and then through a high-pass filter.…”
Section: Eeg Network Analysismentioning
confidence: 99%
“…Many previous studies have reported the differences between healthy and abnormal groups in frequency domain [46,47]. To explore the differences in network patterns be-tween DE and HC groups in frequency bands, the preprocessed EEG signals were firstly filtered into delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-50 Hz) bands using a Chebyshev filter [48][49][50]. The band-pass filtering process involves first passing through a low-pass filter and then through a high-pass filter.…”
Section: Eeg Network Analysismentioning
confidence: 99%
“…Another study on multimodal emotion recognition was conduced by López-Gil et al (2016) who found that combining different signal sources on the feature level enables the detection of self-regulatory behavior more effectively than only using EEG data. Most recently, Wu et al (2021) fused EEG and eye tracking data for emotion classification using effective deep learning for a gradient neural network. They report an 88% accuracy for the recognition of eight emotions.…”
Section: Eeg and Eye Tracking Based Mental State Detectionmentioning
confidence: 99%
“…Dessa forma, estudos que envolvem a curva ROC, podem avaliar a capacidade de classificação em diferir duas classes de estímulos associativos, podendo neste contexto indicar a presença ou ausência de um estímulo. Revelando a taxa de verdadeiros positivos (sensibilidade ou Recall) em relação à taxa de falsos positivos (1 -especificidade) para diferentes limiares de classificação 7 . Sendo possível ainda, a utilização de uma interface Trigger-in para garantir a precisão temporal dos dados e a sincronização adequada entre os diferentes dispositivos na identificação de estímulos visuais, com a combinação do uso de eye-tracking e do EEG, fazendo com que o sinal de movimento dos olhos acione a marca no eletroencefalograma 7 .…”
Section: Introductionunclassified
“…A partir disso, podemos analisar o Recall e a especificidade dos sinais gerados 7 Os elementos do sistema de redes (Networks) decorrem da interação de seus componentes 9 . Os diferentes tipos de interação permitem a coexistência da atuação de diversas redes em paralelo ao "sistema principal".…”
Section: Introductionunclassified