Many
mitochondrial metabolites and bioactive molecules contain
two carboxylic acid moieties that make them unable to cross biological
membranes. Hence, there is considerable interest in facilitating the
uptake of these molecules into cells and mitochondria to modify or
report on their function. Conjugation to the triphenylphosphonium
(TPP) lipophilic cation is widely used to deliver molecules selectively
to mitochondria in response to the membrane potential. However, permanent
attachment to the cation can disrupt the biological function of small
dicarboxylates. Here, we have developed a strategy using TPP to release
dicarboxylates selectively within mitochondria. For this, the dicarboxylate
is attached to a TPP compound via a single ester bond, which is then
cleaved by intramitochondrial esterase activity, releasing the dicarboxylate
within the organelle. Leaving the second carboxylic acid free also
means mitochondrial uptake is dependent on the pH gradient across
the inner membrane. To assess this strategy, we synthesized a range
of TPP monoesters of the model dicarboxylate, malonate. We then tested
their mitochondrial accumulation and ability to deliver malonate to
isolated mitochondria and to cells,
in vitro
and
in vivo
. A TPP–malonate monoester compound, TPP
11
–malonate, in which the dicarboxylate group was attached
to the TPP compound via a hydrophobic undecyl link, was most effective
at releasing malonate within mitochondria in cells and
in
vivo
. Therefore, we have developed a TPP–monoester
platform that enables the selective release of bioactive dicarboxylates
within mitochondria.