Domestication and island evolution can lead to changes of life history along the slow-fast gradient. Shifts of life history patterns, in turn, are potentially related to alterations of patterns and timing of tooth eruption. Schultz's rule predicts an earlier eruption of molars relative to premolars as fecundity increases during the domestication process. On the other hand, evolution on a predatorfree, resource limited island might lead to a generally slow life history and delayed tooth eruption, as in the Plio-Pleistocene Balearic caprine Myotragus. In this study, we investigate tooth eruption and its relation to life history in a unique sheep population that is an example of both domestication and island evolution: the ancient and feral Soay sheep (Ovis aries) of the St. Kilda archipelago, Scotland. Tooth eruption timing and sequence is investigated in a comparative framework featuring new data on other domestic sheep (O. aries), including European mouflon (O. a. musimon), as well as wild sheep (O. vignei, O. cycloceros, O. arkal, O. orientalis, O. ammon). These data indicate that the order of eruption is similar in wild and domestic sheep, despite the fundamental life history changes that came about with domestication. However, in contrast to other domestic sheep breeds, Soay sheep erupt their teeth at an absolute older age and also tend to grow more slowly, which resembles the evolutionary trend in island-adapted Myotragus. Despite these similarities, Soay sheep do not share the slow life history pattern inferred for Myotragus, highlighting the distinctive nature of tooth eruption in Soay sheep.