Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The low-cost and highly efficient pesticides are largely used in residential, agricultural, and commercial applications. Their prevalent occurrence, bioaccumulation, and chronic toxicity to living beings have raised environmental concern and call for their whole eradication, especially from water. By virtue of semiconducting nature and high surface area, nanomaterials have become efficient adsorbent and photocatalyst in removal of toxins. To confirm this, the potential of highly crystalline metal hexacyanoferrates (MHCFs) of Zn, Cu, Co, and Ni was evaluated in deprivation of selected hazardous pesticides, viz., chlorpyrifos (CP), thiamethoxam (TH), and tebuconazole (TEB). Sharp nanocubes of ZnHCF (~ 100 nm), distorted nanocubes of CuHCF (~ 100 nm), and nanospheres of CoHCF and NiHCF (< 10 nm) were synthesized via green route using Sapindus mukorossi (raw ritha). At 50 mg L of pesticide, 15 mg of MHCF photocatalyst, neutral pH and sunlight irradiation, selected agrochemicals were degraded to maximum extent (91-98%) by ZnHCF followed by CuHCF (85-91%), NiHCF (73-85%), and CoHCF (70-83%). This might be because of highest zeta potential and BET surface area of ZnHCF. The highest adsorption of CP (83-98%) followed by TH (76-95%) and TEB (70-91%) on acidic surface of catalysts might be related to access of free electrons in their structures. On treatment with MHCF photocatalyst, targets underwent mineralization along with formation of some minor and non-toxic by-products such as (Z) but-2-enal, 3-aminopropanoic acid, and pyridin-3-ol, identified after mass spectrometric analysis of reaction mixture. Based on them, degradation pathways have been proposed to reveal the potential of MHCF for solar photocatalytic removal of organic pollutants in environment.
The low-cost and highly efficient pesticides are largely used in residential, agricultural, and commercial applications. Their prevalent occurrence, bioaccumulation, and chronic toxicity to living beings have raised environmental concern and call for their whole eradication, especially from water. By virtue of semiconducting nature and high surface area, nanomaterials have become efficient adsorbent and photocatalyst in removal of toxins. To confirm this, the potential of highly crystalline metal hexacyanoferrates (MHCFs) of Zn, Cu, Co, and Ni was evaluated in deprivation of selected hazardous pesticides, viz., chlorpyrifos (CP), thiamethoxam (TH), and tebuconazole (TEB). Sharp nanocubes of ZnHCF (~ 100 nm), distorted nanocubes of CuHCF (~ 100 nm), and nanospheres of CoHCF and NiHCF (< 10 nm) were synthesized via green route using Sapindus mukorossi (raw ritha). At 50 mg L of pesticide, 15 mg of MHCF photocatalyst, neutral pH and sunlight irradiation, selected agrochemicals were degraded to maximum extent (91-98%) by ZnHCF followed by CuHCF (85-91%), NiHCF (73-85%), and CoHCF (70-83%). This might be because of highest zeta potential and BET surface area of ZnHCF. The highest adsorption of CP (83-98%) followed by TH (76-95%) and TEB (70-91%) on acidic surface of catalysts might be related to access of free electrons in their structures. On treatment with MHCF photocatalyst, targets underwent mineralization along with formation of some minor and non-toxic by-products such as (Z) but-2-enal, 3-aminopropanoic acid, and pyridin-3-ol, identified after mass spectrometric analysis of reaction mixture. Based on them, degradation pathways have been proposed to reveal the potential of MHCF for solar photocatalytic removal of organic pollutants in environment.
Recent EU legislation has introduced endocrine disrupting properties as a hazard-based "cut-off" criterion for the approval of active substances as pesticides and biocides. Currently, no specific science-based approach for the assessment of substances with endocrine disrupting properties has been agreed upon, although this new legislation provides interim criteria based on classification and labelling. Different proposals for decision making on potential endocrine disrupting properties in human health risk assessment have been developed by the German Federal Institute for Risk Assessment (BfR) and other regulatory bodies. All these frameworks, although differing with regard to hazard characterisation, include a toxicological assessment of adversity of the effects, the evaluation of underlying modes/mechanisms of action in animals and considerations concerning the relevance of effects to humans. Three options for regulatory decision making were tested upon 39 pesticides for their applicability and to analyze their potential impact on the regulatory status of active substances that are currently approved for use in Europe: Option 1, based purely on hazard identification (adversity, mode of action, and the plausibility that both are related); Option 2, based on hazard identification and additional elements of hazard characterisation (severity and potency); Option 3, based on the interim criteria laid down in the recent EU pesticides legislation. Additionally, the data analysed in this study were used to address the questions, which parts of the endocrine system were affected, which studies were the most sensitive and whether no observed adverse effect levels were observed for substance with ED properties. The results of this exercise represent preliminary categorisations and must not be used as a basis for definitive regulatory decisions. They demonstrate that a combination of criteria for hazard identification with additional criteria of hazard characterisation allows prioritising and differentiating between substances with regard to their regulatory concern. It is proposed to integrate these elements into a decision matrix to be used within a weight of evidence approach for the toxicological categorisation of relevant endocrine disruptors and to consider all parts of the endocrine system for regulatory decision making on endocrine disruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.