Enantioselective hydrolysis of bromo- and methoxy-substituted 1-phenylethanol acetates was conducted using comminuted carrot (Daucus carota L.) and celeriac (Apium graveolens L. var. rapaceum) roots. Hydrolysis of the acetates led to alcohols, preferentially to R-(+)- enantiomers. Efficiencies of both reactions - hydrolysis of the acetates with an electrondonating methoxy group and oxidation of the resulting alcohols - increased in the following order: ortho < meta < para. The presence of an electron-withdrawing bromine atom in the aromatic ring had the opposite effect. Oxidation of alcohols with both types of substituents in the aromatic ring showed that location of a substituent had stronger impact on the oxidation rate than its electronic properties.