Lamp spectral customization can be a strategy to achieve desirable plant characteristics when plants are grown under sole-source electric lighting. Vegetable transplants can be efficiently and economically grown under indoor-production systems with electrical lighting; however, speciesspecific light recipes have to be developed to improve plant growth, development and morphology, as well as to reduce electrical consumption. The objective of this study was to evaluate the growth and morphology of tomato transplants to a broad range of blue to red (B:R) photon flux (PF) ratios under LEDs and cool white fluorescent lamps (CWF). Tomato "Komeett" and "Beaufort" seedlings were grown in a climate control growth chamber. Using LEDs, seven light treatments with different blue (B), green (G) and red (R) PF ratios were used: 100R, 10B:90R, 20B:28G:52R, 30B:70R, 50B:50R, 75B:25R and 100B. In addition, a CWF treatment served as the control. Hypocotyl length of "Komeett" decreased with the increase of percent B PF up to 75% B. Plant leaf area was 64-72% greater under treatments emitting both B and R PF than in the 100 B and 100 R treatments. Similarly, tomato "Komeett" fresh mass, dry mass, leaf