Lamp spectral customization can be a strategy to achieve desirable plant characteristics when plants are grown under sole-source electric lighting. Vegetable transplants can be efficiently and economically grown under indoor-production systems with electrical lighting; however, speciesspecific light recipes have to be developed to improve plant growth, development and morphology, as well as to reduce electrical consumption. The objective of this study was to evaluate the growth and morphology of tomato transplants to a broad range of blue to red (B:R) photon flux (PF) ratios under LEDs and cool white fluorescent lamps (CWF). Tomato "Komeett" and "Beaufort" seedlings were grown in a climate control growth chamber. Using LEDs, seven light treatments with different blue (B), green (G) and red (R) PF ratios were used: 100R, 10B:90R, 20B:28G:52R, 30B:70R, 50B:50R, 75B:25R and 100B. In addition, a CWF treatment served as the control. Hypocotyl length of "Komeett" decreased with the increase of percent B PF up to 75% B. Plant leaf area was 64-72% greater under treatments emitting both B and R PF than in the 100 B and 100 R treatments. Similarly, tomato "Komeett" fresh mass, dry mass, leaf
Intumescence injury is an abiotic-stress-induced physiological disorder associated with abnormal cell enlargement and cell division. The symptom includes blister- or callus-like growths on leaves, which occur on sensitive cultivars of tomato when they are grown under ultraviolet (UV)-deficit light environment, such as light-emitting diodes (LEDs). Previous studies suggest that intumescence can be reduced by increasing far-red (FR) or blue light. In the present study, effects of end-of-day FR (EOD-FR) light and high blue photon flux (PF) ratio during the photoperiod on intumescence injury were examined using ‘Beaufort’ interspecific tomato rootstock seedlings (Solanum lycopersicum × Solanum habrochaites), a cultivar highly susceptible to intumescence injury. Our study showed that EOD-FR light treatment moderately suppressed intumescence injury. Using EOD-FR light treatment, the percent number of leaves exhibiting intumescences was reduced from 62.0–70.7% to 39.4–43.1%. By combining high blue PF ratio (75%) during the photoperiod and EOD-FR light treatment, the percent number of leaves exhibiting intumescences was further suppressed to 5.0%. Furthermore, the combination of high blue PF ratio and EOD-FR light treatment inhibited undesirable stem elongation caused by EOD-FR light treatment. We found that high blue PF ratio during the photoperiod combined with a small dose of EOD-FR lighting (≈1 mmol·m−2·d−1 provided by 5.2 µmol·m−2·s−1 FR PF for 3.3 minutes) could inhibit the problematic intumescence injury of tomato plants grown under LEDs without negatively influencing growth or morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.