This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT
ACCEPTED MANUSCRIPT 2
AbstractCoronary heart disease is less prevalent in pre-menopausal women than in men, but increases at the onset of menopause. This delay is due to estrogen protective effects. The rise of cholesterolemia is one of the main risk factors for coronary disease. Since 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) is the rate-limiting enzyme of the cholesterol biosynthetic pathway, it plays a pivotal role in cholesterol homeostasis maintenance. Aim of this study is to investigate whether HMGR is involved in the cholesterolemia increase that occurs during aging, and to consider its potential role as a target for estrogen protective effects. "In vivo" studies have been performed using the livers of 12-month-old female rats (whose estrogen level decrease is comparable to the one detected at the occurrence of human estropause), 12-month-old female rats treated with 17--estradiol, and 3-month-old untreated male and female rats. The results indicated hypercholesterolemic status and a significant increase of HMGR activity according to a reduced activation of AMPK detected in treated rats compared to controls. Furthermore, 17-estradiol treatment reduced HMGR activity restoring AMPK activation. These findings highlight the correlation between estrogen and HMGR short-term regulation, and suggest the presence of another mechanism underlying the protective role of estrogen in age-related diseases.