Background: It is still difficult to detect and diagnose early adenocarcinoma of the esophagogastric junction (EGJ) using conventional endoscopy or image-enhanced endoscopy. A glutamylprolyl hydroxymethyl rhodamine green (EP-HMRG) fluorescent probe that can be enzymatically activated to become fluorescent after the cleavage of a dipeptidyl peptidase (DPP)-IV-specific sequence has been developed and is reported to be useful for the detection of squamous cell carcinoma of the head and neck, and esophagus; however, there is a lack of studies that focuses on detecting EGJ adenocarcinoma by fluorescence molecular imaging. Therefore, we investigated the visualization of early EGJ adenocarcinoma by applying EP-HMRG and using clinical samples resected by endoscopic submucosal dissection (ESD). Methods: Fluorescence imaging with EP-HMRG was performed in 21 clinical samples resected by ESD, and the fluorescence intensity of the tumor and non-tumor regions of interest was prospectively measured. Immunohistochemistry was also performed to determine the expression of DPP-IV. Results: Fluorescence imaging of the clinical samples showed that the tumor lesions were visualized within a few minutes after the application of EP-HMRG, with a sensitivity, specificity, and accuracy of 85.7, 85.7, and 85.7%, respectively. However, tumors with a background of intestinal metaplasia did not have a sufficient contrast-tobackground ratio since complete intestinal metaplasia also expresses DPP-IV. Immunohistochemistry measurements revealed that all fluorescent tumor lesions expressed DPP-IV. Conclusions: Fluorescence imaging with EP-HMRG could be useful for the detection of early EGJ adenocarcinoma lesions that do not have a background of intestinal metaplasia.