Inflammatory mediators such as TNF and bacterial LPS do not cause significant apoptosis of endothelial cells unless the expression of cytoprotective genes is blocked. In the case of TNF, the transcription factor NF-κB conveys an important survival signal. In contrast, even though LPS can also activate NF-κB, this signal is dispensable for LPS-inducible cytoprotective activity. LPS intracellular signals are transmitted through a member of the Toll-like receptor family, TLR4. This family of receptors transduces signals through a downstream molecule, TNFR-associated factor 6 (TRAF6). In this study, we demonstrate that the C-terminal fragment of TRAF6 (TRAF6-C) inhibits LPS-induced NF-κB nuclear translocation and c-Jun NH2-terminal kinase (JNK) activation in endothelial cells. In contrast, LPS activation of p38 kinase is not inhibited by TRAF6-C. TRAF6-C also inhibits LPS-initiated endothelial apoptosis, but potentiates TNF-induced apoptosis. LPS-induced loss of mitochondrial transmembrane potential, cytochrome c release, and caspase activation are all blocked by TRAF6-C. We demonstrate that TRAF6 signals apoptosis via JNK activation, since inhibition of JNK activation using a dominant-negative mutant also inhibits apoptosis. JNK inhibition blocks caspase activation, but the reverse is not true. Hence, JNK activation lies upstream of caspase activation in response to LPS stimulation.