Cancer cells recruit neutrophils from the bloodstream into the tumor tissue, where these immune cells promote the progression of numerous solid tumors. Studies in mice suggest that blocking neutrophil recruitment to tumors by inhibition of neutrophil chemokine receptor CXCR2 could be a potential immunotherapy for pancreatic cancer. Yet, the mechanisms by which neutrophils promote tumor progression in humans, as well as how CXCR2 inhibition could potentially serve as a cancer therapy, remain elusive. In this study, we developed a human cell-based microphysiological system to quantify neutrophil-tumor spheroid interactions in both “separated” and “contact” scenarios. We found that neutrophils promote the invasion of tumor spheroids through the secretion of soluble factors and direct contact with cancer cells. However, they promote the proliferation of tumor spheroids solely through direct contact. Interestingly, treatment with AZD-5069, a CXCR2 inhibitor, attenuates invasion and proliferation of tumor spheroids by blocking direct contact with neutrophils. Our findings show that CXCR2 inhibition reduces neutrophil migration toward tumor spheroids. These results shed new light on the tumor-promoting mechanisms of human neutrophils and the tumor-suppressive mechanisms of CXCR2 inhibition in pancreatic cancer and may aid in the design and optimization of novel immunotherapeutic strategies based on neutrophils.