This study analyses the expansion of solar energy in Iran, considering political, economic, social, and technological factors. Due to the prolonged sanctions on Iran, the development of clean energy power plants has been either halted or significantly reduced. Hence, this study aims to identify barriers to the expansion of solar energy power plants and simulate solar power plants using PVsyst (Photovoltaic system) software. The study is unique in its approach of combining technical analysis with social sciences to facilitate the implementation of solar energy expansion in remote areas. This study focuses on two specific areas with high solar radiation, namely Darab and Meybod, which are located in Fars and Yazd provinces, respectively. Solar energy can be generated in these two areas due to their unique location with high levels of solar irritation. To achieve this goal, the technical analyses focuson simulating the performance of a 9 kWp (kilowatt ‘peak’ power output of a system) grid-connected polysilicon(poly-Si) photovoltaic plant for Darab and a 9.90 kWp plant for Meybod. The simulation is carried out to obtain maximum electricity production and evaluate parameters such as incident radiation, performance ratio, energy into the grid, energy output at the array, and losses. The produced energy for Darab was 20.40 MWh/year, with specific production of 2061 kWh/kWp/year, and the performance ratio (PR) was 81.26%. For Meybod, production was 20.70 MWh/year, with specific production of 2091 kWh/kWp/year, and the performance ratio (PR) was 80.88%. Through the PEST analysis, it is evident that strategic planning and appropriate actions are crucial at the provincial, national, and local levels for energy systems’ development. This indicates that both governments and citizens should play an active role in supporting the expansion of energy systems by planning and creating awareness among the public to embrace and adopt energy systems.