In Finland, old apartments (1980s) contribute toward emissions. The objective is to reduce CO2 emissions to reach Europe’s targets of 2050. Three different centralized solar-based district heating systems integrated either with non-renovated or renovated old buildings in the community were simulated and compared against the reference city-level district heating system. The three proposed centralized systems were: Case 1: photovoltaic (PV) with a ground source heat pump (GSHP); Case 2: PV with an air-water heat pump (A2WHP); and Case 3: PV with A2WHPs, seasonal storage, and GSHPs. TRNSYS simulation software was used for dynamic simulation of the systems. Life cycle cost (LCC), CO2 emissions and purchased electricity were calculated and compared. The results show that the community-level district heating system (Case 3) outperformed Case 1, Case 2, and the city-level district heating. With non-renovated buildings, the relative emissions reduction was 83% when the reference energy system was replaced with Case 3 and the emissions reduction cost was 3.74 €/kg.CO2/yr. The relative emissions reduction was 91% when the buildings were deep renovated and integrated with Case 3 when compared to the reference system with non-renovated buildings and the emission reduction cost was 11.9 €/kg.CO2/yr. Such district heating systems could help in meeting Europe’s emissions target for 2050.