This paper shows the recent work of the authors in the development of a time-domain FEM model for evaluation of the seal dynamics of a surface effect ship. The fluid solver developed for this purpose, uses a potential flow approach along with a stream-line integration of the free surface. The paper focuses on the free surface-structure algorithm that has been developed to allow the simulation of the complex and highly dynamic behavior of the seals in the interface between the air cushion, and the water. The developed fluid-structure interaction solver is based, on one side, on an implicit iteration algorithm, communicating pressure forces and displacements of the seals at memory level and, on the other side, on an innovative wetting and drying scheme able to predict the water action on the seals. The stability of the iterative scheme is improved by means of relaxation, and the convergence is accelerated using Aitken's method. Several validations against experimental results have been carried out to demonstrate the developed algorithm.