Summary
Multicarrier energy systems are increasingly used for a number of applications, among which the supply of electricity, heating, and cooling in buildings. The possibility of switching between different energy sources is a crucial advantage for the optimal fulfillment of the energy demand. The flexibility of these systems can benefit from the integration with smart grids, which have strong variations in time during their operation. The energy price is the parameter that is usually considered, but also the primary energy factor and the greenhouse gases emissions need to be accounted. This paper presents an application of an operational optimization method for a multicarrier energy system, based on real data–driven model and applied to different countries. The generation plant of a hospital is considered as case study, coping with multiple energy needs by relying on different conversion technologies. The optimal operation of the system shows a wide range of variability, depending on the chosen objective function, the hour of the day, the season, and the country. The results are affected mostly by the energy mix of the electricity supplied from the power grid, which has a direct influence on the primary energy consumption and the greenhouse gases emissions and an indirect influence on the electricity prices.